前瞻经济学人 看懂未来新十年

打开APP

AI可以像人一样“思考”?新研究使用3D建模分析深度神经网络如何处理信息

Emma Chou

1

创造像人类一样的人工智能技术,不仅仅是模仿人类的行为,还必须能够处理信息,或像人类一样“思考”。格拉斯哥大学的新研究中,使用3D建模来分析深度神经网络(Deep Neural Networks)处理信息的方式,以可视化它们的信息处理与人类的处理方式并进行匹配。

目前人工智能发展仍然面临的挑战是如何更好地理解机器的思维过程,以及它是否与人类处理信息的方式相匹配。深度神经网络经常被认为是目前人类决策行为的最佳模型,在一些任务中达到甚至超过人类的表现。然而,即使是欺骗性的简单视觉辨别任务,与人类相比,人工智能模型也会显示出明显的不一致和错误。

目前,深度神经网络技术被用于人脸识别等应用,在这些领域非常成功。但科学家们仍然没有完全理解这些网络是如何处理信息的。

在这项新的研究中,研究小组通过对深度神经网络得到的视觉刺激进行建模,以多种方式进行转换,从而解决了这一问题,他们可以通过处理人类和人工智能模型之间的类似信息,来证明识别的相似性。

研究人员表示,在建立“像”人类行为的人工智能模型时,例如,只要看到一个人的脸,就能像人类一样认出来,必须确保人工智能模型使用与另一个人相同的信息来识别它。如果人工智能不这样做,可能会有这样的错觉:即该系统的工作方式与人类一样,但随后发现它在一些新的或未经测试的情况下会出错。

研究人员使用了一系列可修改的3D面孔,并要求人类对这些随机生成的面孔与四个熟悉身份的相似性进行评分。然后他们用这些信息来测试深度神经网络是否以同样的理由做出了同样的评价。这样不仅测试人类和人工智能是否做出了同样的决定,而且还测试它是否基于同样的信息。

更重要的是,通过这种方法,研究人员可以将这些结果可视化为驱动人类和网络行为的三维面孔。例如,一个对2000个身份进行正确分类的网络,是由一张严重漫画化的面孔所驱动,这表明它识别的面孔处理与人类非常不同的面部信息。

研究人员希望这项工作将为更可靠的人工智能技术铺平道路,使其行为更像人类,并减少不可预测的错误。

题为Grounding deep neural network predictions of human categorization behavior in understandable functional features: The case of face identity的相关研究论文发表在《Patterns》上。

前瞻经济学人APP资讯组

论文原文:

https://www.cell.com/patterns/fulltext/S2666-3899(21)00203-8?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS2666389921002038%3Fshowall%3Dtrue


阅读全文
打开APP,享受沉浸式阅读体验

提问研究员

一键提问研究员,零距离互动交流

我要提问
1

App数据库能为你做什么?

看看用户怎么说

2

App问答能为你做什么?

看看用户怎么说

3

App报告能为你做什么?

看看用户怎么说

4

App文章能为你做什么?

看看用户怎么说

相关阅读